Viscosity  

A simulation of liquids with different viscosities. The liquid on the right has higher viscosity than the liquid on the left.  
Common symbols  η, μ 
Derivations from other quantities  μ = G·t 
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water.^{[1]}
Viscosity can be conceptualized as quantifying the frictional force that arises between adjacent layers of fluid that are in relative motion. For instance, when a fluid is forced through a tube, it flows more quickly near the tube's axis than near its walls. In such a case, experiments show that some stress (such as a pressure difference between the two ends of the tube) is needed to sustain the flow through the tube. This is because a force is required to overcome the friction between the layers of the fluid which are in relative motion: the strength of this force is proportional to the viscosity.
A fluid that has no resistance to shear stress is known as an ideal or inviscid fluid. Zero viscosity is observed only at very low temperatures in superfluids. Otherwise, the second law of thermodynamics requires all fluids to have positive viscosity;^{[2]}^{[3]} such fluids are technically said to be viscous or viscid. A fluid with a high viscosity, such as pitch, may appear to be a solid.
Etymology
The word "viscosity" is derived from the Latin "viscum", meaning mistletoe and also a viscous glue made from mistletoe berries.^{[4]}
Definition
Simple definition
In materials science and engineering, one is often interested in understanding the forces, or stresses, involved in the deformation of a material. For instance, if the material were a simple spring, the answer would be given by Hooke's law, which says that the force experienced by a spring is proportional to the distance displaced from equilibrium. Stresses which can be attributed to the deformation of a material from some rest state are called elastic stresses. In other materials, stresses are present which can be attributed to the rate of change of the deformation over time. These are called viscous stresses. For instance, in a fluid such as water the stresses which arise from shearing the fluid do not depend on the distance the fluid has been sheared; rather, they depend on how quickly the shearing occurs.
Viscosity is the material property which relates the viscous stresses in a material to the rate of change of a deformation (the strain rate). Although it applies to general flows, it is easy to visualize and define in a simple shearing flow, such as a planar Couette flow.
In the Couette flow, a fluid is trapped between two infinitely large plates, one fixed and one in parallel motion at constant speed (see illustration to the right). If the speed of the top plate is low enough (to avoid turbulence), then in steady state the fluid particles move parallel to it, and their speed varies from at the bottom to at the top.^{[5]} Each layer of fluid moves faster than the one just below it, and friction between them gives rise to a force resisting their relative motion. In particular, the fluid applies on the top plate a force in the direction opposite to its motion, and an equal but opposite force on the bottom plate. An external force is therefore required in order to keep the top plate moving at constant speed.
In many fluids, the flow velocity is observed to vary linearly from zero at the bottom to at the top. Moreover, the magnitude of the force acting on the top plate is found to be proportional to the speed and the area of each plate, and inversely proportional to their separation :
The proportionality factor is the viscosity of the fluid, with units of (pascalsecond). The ratio is called the rate of shear deformation or shear velocity, and is the derivative of the fluid speed in the direction perpendicular to the plates (see illustrations to the right). If the velocity does not vary linearly with , then the appropriate generalization is
where , and is the local shear velocity. This expression is referred to as Newton's law of viscosity. In shearing flows with planar symmetry, it is what defines . It is a special case of the general definition of viscosity (see below), which can be expressed in coordinatefree form.
Use of the Greek letter mu () for the viscosity is common among mechanical and chemical engineers, as well as physicists.^{[6]}^{[7]}^{[8]} However, the Greek letter eta () is also used by chemists, physicists, and the IUPAC.^{[9]} The viscosity is sometimes also referred to as the shear viscosity. However, at least one author discourages the use of this terminology, noting that can appear in nonshearing flows in addition to shearing flows.^{[10]}
General definition
In very general terms, the viscous stresses in a fluid are defined as those resulting from the relative velocity of different fluid particles. As such, the viscous stresses must depend on spatial gradients of the flow velocity. If the velocity gradients are small, then to a first approximation the viscous stresses depend only on the first derivatives of the velocity.^{[11]} (For Newtonian fluids, this is also a linear dependence.) In Cartesian coordinates, the general relationship can then be written as
where is a viscosity tensor that maps the strain rate tensor onto the viscous stress tensor .^{[12]} Since the indices in this expression can vary from 1 to 3, there are 81 "viscosity coefficients" in total. However, due to spatial symmetries these coefficients are not all independent. For instance, for isotropic Newtonian fluids, the 81 coefficients can be reduced to 2 independent parameters. The most usual decomposition yields the standard (scalar) viscosity and the bulk viscosity :
where is the unit tensor, and the dagger denotes the transpose.^{[10]}^{[13]} This equation can be thought of as a generalized form of Newton's law of viscosity.
The bulk viscosity (also called volume viscosity) expresses a type of internal friction that resists the shearless compression or expansion of a fluid. Knowledge of is frequently not necessary in fluid dynamics problems. For example, an incompressible fluid satisfies and so the term containing drops out. Moreover, is often assumed to be negligible for gases since it is in a monoatomic ideal gas.^{[10]} One situation in which can be important is the calculation of energy loss in sound and shock waves, described by Stokes' law of sound attenuation, since these phenomena involve rapid expansions and compressions.
It is worth emphasizing that the above expressions are not fundamental laws of nature, but rather definitions of viscosity. As such, their utility for any given material, as well as means for measuring or calculating the viscosity, must be established using separate means.
Dynamic and kinematic viscosity
In fluid dynamics, it is common to work in terms of the kinematic viscosity (also called "momentum diffusivity"), defined as the ratio of the viscosity μ to the density of the fluid ρ. It is usually denoted by the Greek letter nu (ν) and has units :
 .
Consistent with this nomenclature, the viscosity is frequently called the dynamic viscosity or absolute viscosity, and has units force × time/area.
Momentum transport
Transport theory provides an alternate interpretation of viscosity in terms of momentum transport: viscosity is the material property which characterizes momentum transport within a fluid, just as thermal conductivity characterizes heat transport, and (mass) diffusivity characterizes mass transport.^{[14]} To see this, note that in Newton's law of viscosity, , the shear stress has units equivalent to a momentum flux, i.e. momentum per unit time per unit area. Thus, can be interpreted as specifying the flow of momentum in the direction from one fluid layer to the next. Per Newton's law of viscosity, this momentum flow occurs across a velocity gradient, and the magnitude of the corresponding momentum flux is determined by the viscosity.
The analogy with heat and mass transfer can be made explicit. Just as heat flows from high temperature to low temperature and mass flows from high density to low density, momentum flows from high velocity to low velocity. These behaviors are all described by compact expressions, called constitutive relations, whose onedimensional forms are given here:
where is the density, and are the mass and heat fluxes, and and are the mass diffusivity and thermal conductivity.^{[15]} The fact that mass, momentum, and energy (heat) transport are among the most relevant processes in continuum mechanics is not a coincidence: these are among the few physical quantities that are conserved at the microscopic level in interparticle collisions. Thus, rather than being dictated by the fast and complex microscopic interaction timescale, their dynamics occurs on macroscopic timescales, as described by the various equations of transport theory and hydrodynamics.
Newtonian and nonNewtonian fluids
Newton's law of viscosity is not a fundamental law of nature, but rather a constitutive equation (like Hooke's law, Fick's law, and Ohm's law) which serves to define the viscosity . Its form is motivated by experiments which show that for a wide range of fluids, is independent of strain rate. Such fluids are called Newtonian. Gases, water, and many common liquids can be considered Newtonian in ordinary conditions and contexts. However, there are many nonNewtonian fluids that significantly deviate from this behavior. For example:
 Shearthickening liquids, whose viscosity increases with the rate of shear strain.
 Shearthinning liquids, whose viscosity decreases with the rate of shear strain.
 Thixotropic liquids, that become less viscous over time when shaken, agitated, or otherwise stressed.
 Rheopectic (dilatant) liquids, that become more viscous over time when shaken, agitated, or otherwise stressed.
 Bingham plastics that behave as a solid at low stresses but flow as a viscous fluid at high stresses.
Trouton's ratio is the ratio of extensional viscosity to shear viscosity. For a Newtonian fluid, the Trouton ratio is 3.^{[16]}^{[17]} Shearthinning liquids are very commonly, but misleadingly, described as thixotropic.^{[18]}
Even for a Newtonian fluid, the viscosity usually depends on its composition and temperature. For gases and other compressible fluids, it depends on temperature and varies very slowly with pressure. The viscosity of some fluids may depend on other factors. A magnetorheological fluid, for example, becomes thicker when subjected to a magnetic field, possibly to the point of behaving like a solid.
In solids
The viscous forces that arise during fluid flow must not be confused with the elastic forces that arise in a solid in response to shear, compression or extension stresses. While in the latter the stress is proportional to the amount of shear deformation, in a fluid it is proportional to the rate of deformation over time. (For this reason, Maxwell used the term fugitive elasticity for fluid viscosity.)
However, many liquids (including water) will briefly react like elastic solids when subjected to sudden stress. Conversely, many "solids" (even granite) will flow like liquids, albeit very slowly, even under arbitrarily small stress.^{[19]} Such materials are therefore best described as possessing both elasticity (reaction to deformation) and viscosity (reaction to rate of deformation); that is, being viscoelastic.
Indeed, some authors have claimed that amorphous solids, such as glass and many polymers, are actually liquids with a very high viscosity (greater than 10^{12} Pa·s).^{[20]}^{[21]} However, other authors dispute this hypothesis, claiming instead that there is some threshold for the stress, below which most solids will not flow at all,^{[22]} and that alleged instances of glass flow in window panes of old buildings are due to the crude manufacturing process of older eras rather than to the viscosity of glass.^{[23]}
Viscoelastic solids may exhibit both shear viscosity and bulk viscosity. The extensional viscosity is a linear combination of the shear and bulk viscosities that describes the reaction of a solid elastic material to elongation. It is widely used for characterizing polymers.
In geology, earth materials that exhibit viscous deformation at least three orders of magnitude greater than their elastic deformation are sometimes called rheids.^{[24]}
Measurement
Viscosity is measured with various types of viscometers and rheometers. A rheometer is used for those fluids that cannot be defined by a single value of viscosity and therefore require more parameters to be set and measured than is the case for a viscometer. Close temperature control of the fluid is essential to acquire accurate measurements, particularly in materials like lubricants, whose viscosity can double with a change of only 5 °C.
For some fluids, the viscosity is constant over a wide range of shear rates (Newtonian fluids). The fluids without a constant viscosity (nonNewtonian fluids) cannot be described by a single number. NonNewtonian fluids exhibit a variety of different correlations between shear stress and shear rate.
One of the most common instruments for measuring kinematic viscosity is the glass capillary viscometer.
In coating industries, viscosity may be measured with a cup in which the efflux time is measured. There are several sorts of cup – such as the Zahn cup and the Ford viscosity cup – with the usage of each type varying mainly according to the industry. The efflux time can also be converted to kinematic viscosities (centistokes, cSt) through the conversion equations.
Also used in coatings, a Stormer viscometer uses loadbased rotation in order to determine viscosity. The viscosity is reported in Krebs units (KU), which are unique to Stormer viscometers.
Vibrating viscometers can also be used to measure viscosity. Resonant, or vibrational viscometers work by creating shear waves within the liquid. In this method, the sensor is submerged in the fluid and is made to resonate at a specific frequency. As the surface of the sensor shears through the liquid, energy is lost due to its viscosity. This dissipated energy is then measured and converted into a viscosity reading. A higher viscosity causes a greater loss of energy.^{[citation needed]}
Extensional viscosity can be measured with various rheometers that apply extensional stress.
Volume viscosity can be measured with an acoustic rheometer.
Apparent viscosity is a calculation derived from tests performed on drilling fluid used in oil or gas well development. These calculations and tests help engineers develop and maintain the properties of the drilling fluid to the specifications required.
Units
The SI unit of dynamic viscosity is the pascalsecond (Pa·s), or equivalently kilogram per meter per second (kg·m^{−1}·s^{−1}). The CGS unit is called the poise (P),^{[25]} named after Jean Léonard Marie Poiseuille. It is commonly expressed, particularly in ASTM standards, as centipoise (cP) since the latter is equal to the SI multiple millipascal seconds (mPa·s).
The SI unit of kinematic viscosity is square meter per second (m^{2}/s), whereas the CGS unit for kinematic viscosity is the stokes (St), named after Sir George Gabriel Stokes.^{[26]} In U.S. usage, stoke is sometimes used as the singular form. The submultiple centistokes (cSt) is often used instead.
The reciprocal of viscosity is fluidity, usually symbolized by or , depending on the convention used, measured in reciprocal poise (P^{−1}, or cm·s·g^{−1}), sometimes called the rhe. Fluidity is seldom used in engineering practice.
Nonstandard units include the reyn, a British unit of dynamic viscosity.^{[citation needed]} In the automotive industry the viscosity index is used to describe the change of viscosity with temperature.
At one time the petroleum industry relied on measuring kinematic viscosity by means of the Saybolt viscometer, and expressing kinematic viscosity in units of Saybolt universal seconds (SUS).^{[27]} Other abbreviations such as SSU (Saybolt seconds universal) or SUV (Saybolt universal viscosity) are sometimes used. Kinematic viscosity in centistokes can be converted from SUS according to the arithmetic and the reference table provided in ASTM D 2161.
Molecular origins
In general, the viscosity of a system depends in detail on how the molecules constituting the system interact. There are no simple but correct expressions for the viscosity of a fluid. The simplest exact expressions are the Green–Kubo relations for the linear shear viscosity or the transient time correlation function expressions derived by Evans and Morriss in 1988.^{[28]} Although these expressions are each exact, calculating the viscosity of a dense fluid using these relations currently requires the use of molecular dynamics computer simulations. On the other hand, much more progress can be made for a dilute gas. Even elementary assumptions about how gas molecules move and interact lead to a basic understanding of the molecular origins of viscosity. More sophisticated treatments can be constructed by systematically coarsegraining the equations of motion of the gas molecules. An example of such a treatment is Chapman–Enskog theory, which derives expressions for the viscosity of a dilute gas from the Boltzmann equation.^{[29]}
Momentum transport in gases is generally mediated by discrete molecular collisions, and in liquids by attractive forces which bind molecules close together.^{[14]} Because of this, the dynamic viscosities of liquids are typically much larger than those of gases.
Pure gases
Elementary calculation of viscosity for a dilute gas Consider a dilute gas moving parallel to the axis with velocity that depends only on the coordinate. To simplify the discussion, the gas is assumed to have uniform temperature and density.
Under these assumptions, the velocity of a molecule passing through is equal to whatever velocity that molecule had when its mean free path began. Because is typically small compared with macroscopic scales, the average velocity of such a molecule has the form
 ,
where is a numerical constant on the order of . (Some authors estimate ;^{[14]}^{[30]} on the other hand, a more careful calculation for rigid elastic spheres gives .) Now, because half the molecules on either side are moving towards , and doing so on average with half the average moleculer speed , the momentum flux from either side is
The net momentum flux at is the difference of the two:
According to the definition of viscosity, this momentum flux should be equal to , which leads to
Viscosity in gases arises principally from the molecular diffusion that transports momentum between layers of flow. An elementary calculation for a dilute gas at temperature and density gives
where is the Boltzmann constant, the molecular mass, and a numerical constant on the order of . The quantity , the mean free path, measures the average distance a molecule travels between collisions. Even without a priori knowledge of , this expression has interesting implications. In particular, since is typically inversely proportional to density and increases with temperature, itself should increase with temperature and be independent of density at fixed temperature. In fact, both of these predictions persist in more sophisticated treatments, and accurately describe experimental observations. Note that this behavior runs counter to common intuition regarding liquids, for which viscosity typically decreases with temperature.^{[14]}^{[30]}
For rigid elastic spheres of diameter , can be computed, giving
In this case is independent of temperature, so . For more complicated molecular models, however, depends on temperature in a nontrivial way, and simple kinetic arguments as used here are inadequate. More fundamentally, the notion of a mean free path becomes imprecise for particles that interact over a finite range, which limits the usefulness of the concept for describing realworld gases.^{[31]}
Chapman–Enskog theory
A technique developed by Sydney Chapman and David Enskog in the early 1900s allows a more refined calculation of .^{[29]} It is based on the Boltzmann equation, which provides a systematic statistical description of a dilute gas in terms of intermolecular interactions.^{[32]} As such, their technique allows accurate calculation of for more realistic molecular models, such as those incorporating intermolecular attraction rather than just hardcore repulsion.
It turns out that a more realistic modeling of interactions is essential for accurate prediction of the temperature dependence of , which experiments show increases more rapidly than the trend predicted for rigid elastic spheres.^{[14]} Indeed, the Chapman–Enskog analysis shows that the predicted temperature dependence can be tuned by varying the parameters in various molecular models. A simple example is the Sutherland model,^{[a]} which describes rigid elastic spheres with weak mutual attraction. In such a case, the attractive force can be treated perturbatively, which leads to a particularly simple expression for :
where is independent of temperature, being determined only by the parameters of the intermolecular attraction. To connect with experiment, it is convenient to rewrite as
where is the viscosity at temperature .^{[33]} If is known from experiments at and at least one other temperature, then can be calculated. It turns out that expressions for obtained in this way are accurate for a number of gases over a sizable range of temperatures. On the other hand, Chapman & Cowling 1970 argue that this success does not imply that molecules actually interact according to the Sutherland model. Rather, they interpret the prediction for as a simple interpolation which is valid for some gases over fixed ranges of temperature, but otherwise does not provide a picture of intermolecular interactions which is fundamentally correct and general. Slightly more sophisticated models, such as the LennardJones potential, may provide a better picture, but only at the cost of a more opaque dependence on temperature. In some systems the assumption of spherical symmetry must be abandoned as well, as is the case for vapors with highly polar molecules like H_{2}O.^{[34]}^{[35]}
Bulk viscosity
In the kineticmolecular picture, a nonzero bulk viscosity arises in gases whenever there are nonnegligible relaxational timescales governing the exchange of energy between the translational energy of molecules and their internal energy, e.g. rotational and vibrational. As such, the bulk viscosity is for a monatomic ideal gas, in which the internal energy of molecules in negligible, but is nonzero for a gas like carbon dioxide, whose molecules possess both rotational and vibrational energy.^{[36]}^{[37]}
Pure liquids
In contrast with gases, there is no simple yet accurate picture for the molecular origins of viscosity in liquids.
At the simplest level of description, the relative motion of adjacent layers in a liquid is opposed primarily by attractive molecular forces acting across the layer boundary. In this picture, one (correctly) expects viscosity to decrease with increasing temperature. This is because increasing temperature increases the random thermal motion of the molecules, which makes it easier for them to overcome their attractive interactions.^{[38]}
Building on this visualization, a simple theory can be constructed in analogy with the discrete structure of a solid: groups of molecules in a liquid are visualized as forming "cages" which surround and enclose single molecules.^{[39]} These cages can be occupied or unoccupied, and stronger molecular attraction corresponds to stronger cages. Due to random thermal motion, a molecule "hops" between cages at a rate which varies inversely with the strength of molecular attractions. In equilibrium these "hops" are not biased in any direction. On the other hand, in order for two adjacent layers to move relative to each other, the "hops" must be biased in the direction of the relative motion. The force required to sustain this directed motion can be estimated for a given shear rate, leading to

(1)
where is the Avogadro constant, is the Planck constant, is the volume of a mole of liquid, and is the normal boiling point. This result has the same form as the widespread and accurate empirical relation

(2)
where and are constants fit from data.^{[39]}^{[40]} On the other hand, several authors express caution with respect to this model. Errors as large as 30% can be encountered using equation (1), compared with fitting equation (2) to experimental data.^{[39]} More fundamentally, the physical assumptions underlying equation (1) have been criticized.^{[41]} It has also been argued that the exponential dependence in equation (1) does not necessarily describe experimental observations more accurately than simpler, nonexponential expressions.^{[42]}^{[43]}
In light of these shortcomings, the development of a less adhoc model is a matter of practical interest. Foregoing simplicity in favor of precision, it is possible to write rigorous expressions for viscosity starting from the fundamental equations of motion for molecules. A classic example of this approach is IrvingKirkwood theory.^{[44]} On the other hand, such expressions are given as averages over multiparticle correlation functions and are therefore difficult to apply in practice.
In general, empirically derived expressions (based on existing viscosity measurements) appear to be the only consistently reliable means of calculating viscosity in liquids.^{[45]}
Mixtures and blends
Gaseous mixtures
The same molecularkinetic picture of a single component gas can also be applied to a gaseous mixture. For instance, in the ChapmanEnskog approach the viscosity of a binary mixture of gases can be written in terms of the individual component viscosities , their respective volume fractions, and the intermolecular interactions.^{[29]} As for the singlecomponent gas, the dependence of on the parameters of the intermolecular interactions enters through various collisional integrals which may not be expressible in terms of elementary functions. To obtain usable expressions for which reasonably match experimental data, the collisional integrals typically must be evaluated using some combination of analytic calculation and empirical fitting. An example of such a procedure is the Sutherland approach for the singlecomponent gas, discussed above.
Blends of liquids
As for pure liquids, the viscosity of a blend of liquids is difficult to predict from molecular principles. One method is to extend the molecular "cage" theory presented above for a pure liquid. This can be done with varying levels of sophistication. One useful expression resulting from such an analysis is the LedererRoegiers equation for a binary mixture:
where is an empirical parameter, and and are the respective mole fractions and viscosities of the component liquids.^{[46]}
Since blending is an important process in the lubricating and oil industries, a variety of empirical and propriety equations exist for predicting the viscosity of a blend, besides those stemming directly from molecular theory.^{[46]}
Solutions and suspensions
Aqeuous solutions
Depending on the solute and range of concentration, an aqueous electrolyte solution can have either a larger or smaller viscosity compared with pure water at the same temperature and pressure. For instance, a 20% saline (sodium chloride) solution has viscosity over 1.5 times that of pure water, whereas a 20% potassium iodide solution has viscosity about 0.91 times that of pure water.
An idealized model of dilute electrolytic solutions leads to the following prediction for the viscosity of a solution:^{[47]}
where is the viscosity of the solvent, is the concentration, and is a positive constant which depends on both solvent and solute properties. However, this expression is only valid for very dilute solutions, having less than 0.1 mol/L.^{[48]} For higher concentrations, additional terms are necessary which account for higherorder molecular correlations:
where and are fit from data. In particular, a negative value of is able to account for the decrease in viscosity observed in some solutions. Estimated values of these constants are shown below for sodium chloride and potassium iodide at temperature 25 °C (mol = mole, L = liter).^{[47]}
Solute  (mol^{1/2} L^{1/2})  (mol^{−1} L)  (mol^{−2} L^{2}) 

Sodium chloride (NaCl)  0.0062  0.0793  0.0080 
Potassium iodide (KI)  0.0047  −0.0755  0.0000 
Suspensions
In a suspension of solid particles (e.g. micronsize spheres suspended in oil), an effective viscosity can be defined in terms of stress and strain components which are averaged over a volume large compared with the distance between the suspended particles, but small with respect to macroscopic dimensions.^{[49]} Such suspensions generally exhibit nonNewtonian behavior. However, for dilute systems in steady flows, the behavior is Newtonian and expressions for can be derived directly from the particle dynamics. In a very dilute system, with volume fraction , interactions between the suspended particles can be ignored. In such a case one can explicitly calculate the flow field around each particle independently, and combine the results to obtain . For spheres, this results in the Einstein equation:
where is the viscosity of the suspending liquid. The linear dependence on is a direct consequence of neglecting interparticle interactions; in general, one will have:
where the coefficient may depend on the particle shape (e.g. spheres, rods, disks).^{[50]} Experimental determination of the precise value of is difficult, however: even the prediction for spheres has not been conclusively validated, with various experiments finding values in the range . This deficiency has been attributed to difficulty in controlling experimental conditions.^{[51]}
In denser suspensions, acquires a nonlinear dependence on , which indicates the importance of interparticle interactions. Various analytical and semiempirical schemes exist for capturing this regime. At the most basic level, a term quadratic in is added to :
and the coefficient is fit from experimental data or approximated from the microscopic theory. In general, however, one should be cautious in applying such simple formulas since nonNewtonian behavior appears in dense suspensions ( for spheres),^{[51]} or in suspensions of elongated or flexible particles.^{[49]}
There is a distinction between a suspension of solid particles, described above, and an emulsion. The latter is a suspension of tiny droplets, which themselves may exhibit internal circulation. The presence of internal circulation can noticeably decrease the observed effective viscosity, and different theoretical or semiempirical models must be used.^{[52]}
Amorphous materials
In the high and low temperature limits, viscous flow in amorphous materials (e.g. in glasses and melts)^{[54]}^{[55]}^{[56]} has the Arrhenius form:
where Q is a relevant activation energy, given in terms of molecular parameters; T is temperature; R is the molar gas constant; and A is approximately a constant. The activation energy Q takes a different value depending on whether the high or low temperature limit is being considered: it changes from a high value Q_{H} at low temperatures (in the glassy state) to a low value Q_{L} at high temperatures (in the liquid state).
For intermediate temperatures, varies nontrivially with temperature and the simple Arrhenius form fails. On the other hand, the twoexponential equation
where , , , are all constants, provides a good fit to experimental data over the entire range of temperatures, while at the same time reducing to the correct Arrhenius form in the low and high temperature limits. Besides being a convenient fit to data, the expression can also be derived from various theoretical models of amorphous materials at the atomic level.^{[55]}
Eddy viscosity
In the study of turbulence in fluids, a common practical strategy is to ignore the smallscale vortices (or eddies) in the motion and to calculate a largescale motion with an effective viscosity, called the "eddy viscosity", which characterizes the transport and dissipation of energy in the smallerscale flow (see large eddy simulation).^{[57]}^{[58]} In contrast to the viscosity of the fluid itself, which must be positive by the second law of thermodynamics, the eddy viscosity can be negative.^{[59]}^{[60]}
Selected substances
Observed values of viscosity vary over several orders of magnitude, even for common substances (see the order of magnitude table below). For instance, a 70% sucrose (sugar) solution has a viscosity over 400 times that of water, and 26000 times that of air.^{[62]} More dramatically, pitch has been estimated to have a viscosity 230 billion times that of water.^{[61]}
Water
The dynamic viscosity of water is about 0.89 mPa·s at room temperature (25 °C). As a function of temperature in kelvins, the viscosity can be estimated using the semiempirical relation
where A = 0.02939 mPa·s, B = 507.88 K, and C = 149.3 K.^{[63]} Experimentally determined values of the viscosity are also given in the table below.
Temperature (°C)  Viscosity (mPa·s) 

10  1.3059 
20  1.0016 
30  0.79722 
50  0.54652 
70  0.40355 
90  0.31417 
Air
Under standard atmospheric conditions (25 °C and pressure of 1 bar), the dynamic viscosity of air is 18.5 μPa·s, roughly 50 times smaller than the viscosity of water at the same temperature. Except at very high pressure, the viscosity of air depends mostly on the temperature.
Other common substances
Substance  Viscosity (mPa·s)  Temperature (°C)  Ref. 

Benzene  0.604  25  ^{[62]} 
Water  1.0016  20  
Mercury  1.526  25  
Whole milk  2.12  20  ^{[64]} 
Olive oil  56.2  26  
Honey  200010000  20  ^{[65]} 
Ketchup^{[b]}  500020000  25  ^{[66]} 
Peanut butter^{[b]}  10^{4}10^{6}  ^{[67]}  
Pitch  2.3×10^{11}  1030 (variable)  ^{[61]} 
Order of magnitude estimates
The following table illustrates the range of viscosity values observed in common substances. Unless otherwise noted, a temperature of 25 °C and a pressure of 1 atmosphere are assumed. Certain substances of variable composition or with nonNewtonian behavior are not assigned precise values, since in these cases viscosity depends on additional factors besides temperature and pressure.
Factor (Pa·s)  Description  Examples  Values (Pa·s)  Ref. 

10^{−6}  Lower range of gaseous viscosity 
Butane  7.49 × 10^{−6}  ^{[68]} 
Hydrogen  8.8 × 10^{−6}  ^{[69]}  
10^{−5}  Upper range of gaseous viscosity  Krypton  2.538 × 10^{−5}  ^{[70]} 
Neon  3.175 × 10^{−5}  
10^{−4}  Lower range of liquid viscosity  Pentane  2.24 × 10^{−4}  ^{[62]} 
Gasoline  6 × 10^{−4}  
Water  8.90 × 10^{−4}  ^{[62]}  
10^{−3}  Typical range for smallmolecule Newtonian liquids 
Ethanol  1.074 × 10^{−3}  
Mercury  1.526 × 10^{−3}  
Whole milk (20 °C)  2.12 × 10^{−3}  ^{[64]}  
Blood  4 × 10^{���3}  
10^{−2} – 10^{0}  Oils and longchain hydrocarbons  Linseed oil  0.028  
Olive oil  0.084  ^{[64]}  
SAE 10 Motor oil  0.085 to 0.14  
Castor oil  0.1  
SAE 20 Motor oil  0.14 to 0.42  
SAE 30 Motor oil  0.42 to 0.65  
SAE 40 Motor oil  0.65 to 0.90  
Glycerine  1.5  
Pancake syrup  2.5  
10^{1} – 10^{3}  Pastes, gels, and other semisolids (generally nonNewtonian) 
Ketchup  ≈ 10^{1}  ^{[66]} 
Mustard  
Sour cream  ≈ 10^{2}  
Peanut butter  ^{[67]}  
Lard  ≈ 10^{3}  
≈10^{8}  Viscoelastic polymers  Pitch  ^{[61]}  
≈10^{21}  Certain solids under a viscoelastic description 
Mantle (geology) 
See also
 Dashpot
 Deborah number
 Dilatant
 Herschel–Bulkley fluid
 Hyperviscosity syndrome
 Intrinsic viscosity
 Inviscid flow
 Joback method (estimation of liquid viscosity from molecular structure)
 Kaye effect
 Microviscosity
 Morton number
 Quasisolid
 Rheology
 Stokes flow
 Superfluid helium4
 Viscoplasticity
 Viscosity models for mixtures
References
Footnotes
 ^ The discussion which follows draws from Chapman & Cowling 1970, pp. 232237
 ^ ^{a} ^{b} These materials are highly nonNewtonian.
Citations
 ^ Symon 1971.
 ^ Balescu 1975, p. 428–429.
 ^ Landau & Lifshitz 1987.
 ^ Harper, Douglas (n.d.). "viscous (adj.)". Online Etymology Dictionary. Retrieved 19 September 2019.
 ^ Mewis & Wagner 2012, p. 19.
 ^ Streeter, Wylie & Bedford 1998.
 ^ Holman 2002.
 ^ Incropera et al. 2007.
 ^ Nič et al. 1997.
 ^ ^{a} ^{b} ^{c} Bird, Stewart & Lightfoot 2007, p. 19.
 ^ Landau & Lifshitz 1987, p. 44–45.
 ^ Bird, Stewart & Lightfoot 2007, p. 18: Note that this source uses a alternate sign convention, which has been reversed here.
 ^ Landau & Lifshitz 1987, p. 45.
 ^ ^{a} ^{b} ^{c} ^{d} ^{e} Bird, Stewart & Lightfoot 2007.
 ^ Schroeder 1999.
 ^ Różańska et al. 2014, pp. 4755.
 ^ Trouton 1906, pp. 426–440.
 ^ Mewis & Wagner 2012, p. 228–230.
 ^ Kumagai, Sasajima & Ito 1978, pp. 157–161.
 ^ Cer103 Notes Shelby Chapter 6 p. 66 R.K. Brow Viscosity at the Wayback Machine (archived 20030612)
 ^ Elert, Glenn. "Viscosity". The Physics Hypertextbook. Retrieved 20190919.
 ^ Gibbs, Philip (January 1997). "Is glass liquid or solid?". math.ucr.edu. Retrieved 19 September 2019.
 ^ Plumb 1989, p. 994.
 ^ Scherer, Pardenek & Swiatek 1988, p. 14.
 ^ McNaught & Wilkinson 1997, poise.
 ^ Gyllenbok 2018, p. 213.
 ^ ASTM D2161 : Standard Practice for Conversion of Kinematic Viscosity to Saybolt Universal Viscosity or to Saybolt Furol Viscosity, ASTM, 2005, p. 1
 ^ Evans & Morriss 1988, pp. 4142–4148.
 ^ ^{a} ^{b} ^{c} Chapman & Cowling 1970.
 ^ ^{a} ^{b} Bellac, Mortessagne & Batrouni 2004.
 ^ Chapman & Cowling 1970, p. 103.
 ^ Cercignani 1975.
 ^ Sutherland 1893, pp. 507–531.
 ^ Bird, Stewart & Lightfoot 2007, p. 2527.
 ^ Chapman & Cowling 1970, pp. 235  237.
 ^ Chapman & Cowling 1970, pp. 197, 214216.
 ^ Cramer 2012, p. 0661022.
 ^ Reid & Sherwood 1958, p. 202.
 ^ ^{a} ^{b} ^{c} Bird, Stewart & Lightfoot 2007, pp. 2931.
 ^ Reid & Sherwood 1958, pp. 203204.
 ^ Hildebrand 1958.
 ^ Hildebrand 1958, p. 37.
 ^ Egelstaff 1992, p. 264.
 ^ Irving & Kirkwood 1949, pp. 817–829.
 ^ Reid & Sherwood 1958, pp. 206209.
 ^ ^{a} ^{b} Zhmud 2014, p. 22.
 ^ ^{a} ^{b} Viswanath et al. 2007.
 ^ Abdulagatov, Zeinalova & Azizov 2006, pp. 75–88.
 ^ ^{a} ^{b} Bird, Stewart & Lightfoot 2007, pp. 3133.
 ^ Bird, Stewart & Lightfoot 2007, p. 32.
 ^ ^{a} ^{b} Mueller, Llewellin & Mader 2009, pp. 1201–1228.
 ^ Bird, Stewart & Lightfoot 2007, p. 33.
 ^ Fluegel, Alexander. "Viscosity calculation of glasses". Glassproperties.com. Retrieved 20100914.
 ^ Doremus 2002, pp. 7619–7629.
 ^ ^{a} ^{b} Ojovan, Travis & Hand 2007, p. 415107.
 ^ Ojovan & Lee 2004, pp. 3803–3810.
 ^ Bird, Stewart & Lightfoot 2007, p. 163.
 ^ Lesieur 2012, pp. 2.
 ^ Sivashinsky & Yakhot 1985, p. 1040.
 ^ Xie & Levchenko 2019, p. 045434.
 ^ ^{a} ^{b} ^{c} ^{d} Edgeworth, Dalton & Parnell 1984, pp. 198–200.
 ^ ^{a} ^{b} ^{c} ^{d} ^{e} Rumble 2018.
 ^ Viswanath & Natarajan 1989, pp. 714–715.
 ^ ^{a} ^{b} ^{c} Fellows 2009.
 ^ Yanniotis, Skaltsi & Karaburnioti 2006, pp. 372–377.
 ^ ^{a} ^{b} Koocheki et al. 2009, pp. 596–602.
 ^ ^{a} ^{b} Citerne, Carreau & Moan 2001, pp. 86–96.
 ^ Kestin, Khalifa & Wakeham 1977.
 ^ Assael et al.
 ^ Kestin, Ro & Wakeham 1972.
Sources
 Abdulagatov, Ilmutdin M.; Zeinalova, Adelya B.; Azizov, Nazim D. (2006). "Experimental viscosity Bcoefficients of aqueous LiCl solutions". Journal of Molecular Liquids. 126 (1–3): 75–88. doi:10.1016/j.molliq.2005.10.006. ISSN 01677322.
 Assael, M. J.; et al. (2018). "Reference Values and Reference Correlations for the Thermal Conductivity and Viscosity of Fluids". Journal of Physical and Chemical Reference Data. 47 (2): 021501. doi:10.1063/1.5036625. ISSN 00472689.
 Balescu, Radu (1975). Equilibrium and NonEquilibrium Statistical Mechanics. John Wiley & Sons. ISBN 9780471046004.
 Bellac, Michael; Mortessagne, Fabrice; Batrouni, G. George (2004). Equilibrium and NonEquilibrium Statistical Thermodynamics. Cambridge University Press. ISBN 9780521821438.
 Bird, R. Byron; Stewart, Warren E.; Lightfoot, Edwin N. (2007). Transport Phenomena (2nd ed.). John Wiley & Sons, Inc. ISBN 9780470115398.
 Bird, R. Bryon; Armstrong, Robert C.; Hassager, Ole (1987), Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics (2nd ed.), John Wiley & Sons
 Cercignani, Carlo (1975). Theory and Application of the Boltzmann Equation. Elsevier. ISBN 9780444194503.
 Chapman, Sydney; Cowling, T.G. (1970). The Mathematical Theory of NonUniform Gases (3rd ed.). Cambridge University Press.
 Citerne, Guillaume P.; Carreau, Pierre J.; Moan, Michel (2001). "Rheological properties of peanut butter". Rheologica Acta. 40 (1): 86–96. doi:10.1007/s003970000120.
 Cramer, M.S. (2012). "Numerical estimates for the bulk viscosity of ideal gases" (PDF). Physics of Fluids. 24 (6): 066102. doi:10.1063/1.4729611. hdl:10919/47646.
 Doremus, R.H. (2002). "Viscosity of silica". J. Appl. Phys. 92 (12): 7619–7629. Bibcode:2002JAP....92.7619D. doi:10.1063/1.1515132.
 Edgeworth, R.; Dalton, B.J.; Parnell, T. (1984). "The pitch drop experiment". European Journal of Physics. 5 (4): 198–200. Bibcode:1984EJPh....5..198E. doi:10.1088/01430807/5/4/003. Retrieved 20090331.
 Egelstaff, P.A. (1992). An Introduction to the Liquid State (2nd ed.). Oxford University Press. ISBN 9780198510123.
 Evans, Denis J.; Morriss, Gary P. (October 15, 1988). "Transienttimecorrelation functions and the rheology of fluids". Physical Review A. 38 (8): 4142–4148. Bibcode:1988PhRvA..38.4142E. doi:10.1103/PhysRevA.38.4142. PMID 9900865.
 Fellows, P.J. (2009). Food Processing Technology: Principles and Practice (3rd ed.). Woodhead. ISBN 9781845692162.
 Gyllenbok, Jan (2018). "Encyclopaedia of Historical Metrology, Weights, and Measures". Encyclopaedia of Historical Metrology, Weights, and Measures. Volume 1. Birkhäuser. ISBN 9783319575988.
 Hildebrand, Joel Henry (1977). Viscosity and Diffusivity: A Predictive Treatment. John Wiley & Sons. ISBN 9780471030720.
 Holman, Jack Philip (2002). Heat Transfer. McGrawHill. ISBN 9780071122306.
 Incropera, Frank P.; et al. (2007). Fundamentals of Heat and Mass Transfer. Wiley. ISBN 9780471457282.
 Irving, J.H.; Kirkwood, John G. (1949). "The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics". J. Chem. Phys. 18 (6): 817–829. doi:10.1063/1.1747782.
 Kestin, J.; Ro, S. T.; Wakeham, W. A. (1972). "Viscosity of the Noble Gases in the Temperature Range 25–700°C". The Journal of Chemical Physics. 56 (8): 4119–4124. doi:10.1063/1.1677824. ISSN 00219606.
 Kestin, J.; Khalifa, H.E.; Wakeham, W.A. (1977). "The viscosity of five gaseous hydrocarbons". The Journal of Chemical Physics. 66: 1132. doi:10.1063/1.434048.
 Koocheki, Arash; et al. (2009). "The rheological properties of ketchup as a function of different hydrocolloids and temperature". International Journal of Food Science & Technology. 44 (3): 596–602. doi:10.1111/j.13652621.2008.01868.x.
 Kumagai, Naoichi; Sasajima, Sadao; Ito, Hidebumi (15 February 1978). "Longterm Creep of Rocks: Results with Large Specimens Obtained in about 20 Years and Those with Small Specimens in about 3 Years". Journal of the Society of Materials Science (Japan). 27 (293): 157–161. NAID 110002299397. Retrieved 20080616.
 Landau, L. D.; Lifshitz, E.M. (1987). Fluid Mechanics (2nd ed.). Elsevier. ISBN 9780080570730.
 Lesieur, Marcel (2012). Turbulence in Fluids: Stochastic and Numerical Modelling. Springer. ISBN 9789400905337.
 Mewis, Jan; Wagner, Norman J. (2012). Colloidal Suspension Rheology. Cambridge University Press. ISBN 9780521515993.
 McNaught, A. D.; Wilkinson, A. (1997). "poise". IUPAC. Compendium of Chemical Terminology (the "Gold Book"). S. J. Chalk (2nd ed.). Oxford: Blackwell Scientific. doi:10.1351/goldbook. ISBN 0967855098.
 Mueller, S.; Llewellin, E. W.; Mader, H. M. (2009). "The rheology of suspensions of solid particles". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 466 (2116): 1201–1228. doi:10.1098/rspa.2009.0445. ISSN 13645021.
 Nič, Miloslav; et al., eds. (1997). "dynamic viscosity, η". IUPAC Compendium of Chemical Terminology. Oxford: Blackwell Scientific Publications. doi:10.1351/goldbook. ISBN 9780967855097.
 Ojovan, M.I.; Lee, W.E. (2004). "Viscosity of network liquids within Doremus approach". J. Appl. Phys. 95 (7): 3803–3810. Bibcode:2004JAP....95.3803O. doi:10.1063/1.1647260.
 Ojovan, M.I.; Travis, K.P.; Hand, R.J. (2000). "Thermodynamic parameters of bonds in glassy materials from viscositytemperature relationships" (PDF). J. Phys.: Condens. Matter. 19 (41): 415107. Bibcode:2007JPCM...19O5107O. doi:10.1088/09538984/19/41/415107. PMID 28192319.
 Plumb, Robert C. (1989). "Antique windowpanes and the flow of supercooled liquids". Journal of Chemical Education. 66 (12): 994. Bibcode:1989JChEd..66..994P. doi:10.1021/ed066p994.
 Reid, Robert C.; Sherwood, Thomas K. (1958). The Properties of Gases and Liquids. McGrawHill.
 Reif, F. (1965), Fundamentals of Statistical and Thermal Physics, McGrawHill. An advanced treatment.
 Różańska, S.; Różański, J.; Ochowiak, M.; Mitkowski, P. T. (2014). "Extensional viscosity measurements of concentrated emulsions with the use of the opposed nozzles device" (PDF). Brazilian Journal of Chemical Engineering. 31 (1): 47–55. ISSN 01046632.
 Rumble, John R., ed. (2018). CRC Handbook of Chemistry and Physics (99th ed.). Boca Raton, FL: CRC Press. ISBN 9781138561632.
 Scherer, George W.; Pardenek, Sandra A.; Swiatek, Rose M. (1988). "Viscoelasticity in silica gel". Journal of NonCrystalline Solids. 107 (1): 14. Bibcode:1988JNCS..107...14S. doi:10.1016/00223093(88)900865.
 Schroeder, Daniel V. (1999). An Introduction to Thermal Physics. Addison Wesley. ISBN 9780201380279.
 Sivashinsky, V.; Yakhot, G. (1985). "Negative viscosity effect in largescale flows". The Physics of Fluids. 28 (4): 1040. doi:10.1063/1.865025.
 Streeter, Victor Lyle; Wylie, E. Benjamin; Bedford, Keith W. (1998). Fluid Mechanics. WCB/McGraw Hill. ISBN 9780070625372.
 Sutherland, William (1893). "LII. The viscosity of gases and molecular force" (PDF). The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 36 (223): 507–531. doi:10.1080/14786449308620508. ISSN 19415982.
 Symon, Keith R. (1971). Mechanics (3rd ed.). AddisonWesley. ISBN 9780201073928.
 Trouton, Fred. T. (1906). "On the Coefficient of Viscous Traction and Its Relation to that of Viscosity". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 77 (519): 426–440. doi:10.1098/rspa.1906.0038. ISSN 13645021.
 Viswanath, D.S.; Natarajan, G. (1989). Data Book on the Viscosity of Liquids. Hemisphere Publishing Corporation. ISBN 0891167781.
 Viswanath, Dabir S.; et al. (2007). Viscosity of Liquids: Theory, Estimation, Experiment, and Data. Springer. ISBN 9781402054815.
 Xie, HongYi; Levchenko, Alex (23 January 2019). "Negative viscosity and eddy flow of the imbalanced electronhole liquid in graphene". Phys. Rev. B. 99 (4): 045434. arXiv:1807.04770v2. doi:10.1103/PhysRevB.99.045434.
 Yanniotis, S.; Skaltsi, S.; Karaburnioti, S. (February 2006). "Effect of moisture content on the viscosity of honey at different temperatures". Journal of Food Engineering. 72 (4): 372–377. doi:10.1016/j.jfoodeng.2004.12.017.
 Zhmud, Boris (2014). "Viscosity Blending Equations" (PDF). LubeTech:93. Lube. No. 121. pp. 22–27.
External links
Look up viscosity in Wiktionary, the free dictionary. 
Wikisource has the text of The New Student's Reference Work article "Viscosity of Liquids". 
 Fluid properties  high accuracy calculation of viscosity for frequently encountered pure liquids and gases
 Gas viscosity calculator as function of temperature
 Air viscosity calculator as function of temperature and pressure
 Fluid Characteristics Chart  a table of viscosities and vapor pressures for various fluids
 Gas Dynamics Toolbox  calculate coefficient of viscosity for mixtures of gases
 Glass Viscosity Measurement  viscosity measurement, viscosity units and fixpoints, glass viscosity calculation
 Kinematic Viscosity  conversion between kinematic and dynamic viscosity
 Physical Characteristics of Water  a table of water viscosity as a function of temperature
 Vogel–Tammann–Fulcher Equation Parameters
 Calculation of temperaturedependent dynamic viscosities for some common components
 "Test Procedures for Testing Highway and Nonroad Engines and Omnibus Technical Amendments"  United States Environmental Protection Agency
 Artificial viscosity
 Viscosity of Air, Dynamic and Kinematic, Engineers Edge