In probability theory and statistics, the **moment-generating function** of a real-valued random variable is an alternative specification of its probability distribution. Thus, it provides the basis of an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions. There are particularly simple results for the moment-generating functions of distributions defined by the weighted sums of random variables. However, not all random variables have moment-generating functions.

As its name implies, the moment generating function can be used to compute a distribution’s moments: the *n*th moment about 0 is the *n*th derivative of the moment-generating function, evaluated at 0.

In addition to real-valued distributions (univariate distributions), moment-generating functions can be defined for vector- or matrix-valued random variables, and can even be extended to more general cases.

The moment-generating function of a real-valued distribution does not always exist, unlike the characteristic function. There are relations between the behavior of the moment-generating function of a distribution and properties of the distribution, such as the existence of moments.

## Definition

The moment-generating function of a random variable *X* is

wherever this expectation exists. In other words, the moment-generating function of *X* is the expectation of the random variable . More generally, when , an -dimensional random vector, and is a fixed vector, one uses instead of :

always exists and is equal to 1. However, a key problem with moment-generating functions is that moments and the moment-generating function may not exist, as the integrals need not converge absolutely. By contrast, the characteristic function or Fourier transform always exists (because it is the integral of a bounded function on a space of finite measure), and for some purposes may be used instead.

The moment-generating function is so named because it can be used to find the moments of the distribution.^{[1]} The series expansion of is

Hence

where is the th moment. Differentiating times with respect to and setting , we obtain the th moment about the origin, ; see Calculations of moments below.

If is a continuous random variable, the following relation between its moment-generating function and the two-sided Laplace transform of its probability density function holds:

since the PDF's two-sided Laplace transform is given as

and the moment-generating function's definition expands (by the law of the unconscious statistician) to

This is consistent with the characteristic function of being a Wick rotation of when the moment generating function exists, as the characteristic function of a continuous random variable is the Fourier transform of its probability density function , and in general when a function is of exponential order, the Fourier transform of is a Wick rotation of its two-sided Laplace transform in the region of convergence. See the relation of the Fourier and Laplace transforms for further information.

## Examples

Here are some examples of the moment-generating function and the characteristic function for comparison. It can be seen that the characteristic function is a Wick rotation of the moment-generating function when the latter exists.

Distribution Moment-generating function Characteristic function Degenerate Bernoulli Geometric

Binomial Negative binomial Poisson Uniform (continuous) Uniform (discrete) Laplace Normal Chi-squared Noncentral chi-squared Gamma Exponential Multivariate normal Cauchy Does not exist Multivariate Cauchy ^{[2]}Does not exist

## Calculation

The moment-generating function is the expectation of a function of the random variable, it can be written as:

- For a discrete probability mass function,
- For a continuous probability density function,
- In the general case: , using the Riemann–Stieltjes integral, and where is the cumulative distribution function.

Note that for the case where has a continuous probability density function , is the two-sided Laplace transform of .

where is the th moment.

### Linear transformations of random variables

If random variable has moment generating function , then has moment generating function

### Linear combination of independent random variables

If , where the *X*_{i} are independent random variables and the *a*_{i} are constants, then the probability density function for *S*_{n} is the convolution of the probability density functions of each of the *X*_{i}, and the moment-generating function for *S*_{n} is given by

### Vector-valued random variables

For vector-valued random variables with real components, the moment-generating function is given by

where is a vector and is the dot product.

## Important properties

Moment generating functions are positive and log-convex, with *M*(0) = 1.

An important property of the moment-generating function is that it uniquely determines the distribution. In other words, if and are two random variables and for all values of *t*,

then

for all values of *x* (or equivalently *X* and *Y* have the same distribution). This statement is not equivalent to the statement "if two distributions have the same moments, then they are identical at all points." This is because in some cases, the moments exist and yet the moment-generating function does not, because the limit

may not exist. The log-normal distribution is an example of when this occurs.

### Calculations of moments

The moment-generating function is so called because if it exists on an open interval around *t* = 0, then it is the exponential generating function of the moments of the probability distribution:

That is, with *n* being a nonnegative integer, the *n*th moment about 0 is the *n*th derivative of the moment generating function, evaluated at *t* = 0.

## Other properties

Jensen's inequality provides a simple lower bound on the moment-generating function:

where is the mean of *X*.

Upper bounding the moment-generating function can be used in conjunction with Markov's inequality to bound the upper tail of a real random variable *X*. This statement is also called the Chernoff bound. Since is monotonically increasing for , we have

for any and any *a*, provided exists. For example, when *X* is a standard normal distribution and , we can choose and recall that . This gives , which is within a factor of 1+*a* of the exact value.

Various lemmas, such as Hoeffding's lemma or Bennett's inequality provide bounds on the moment-generating function in the case of a zero-mean, bounded random variable.

When is non-negative, the moment generating function gives a simple, useful bound on the moments:

For any and .

This follows from the simple inequality into which we can substitute implies for any . Now, if and , this can be rearranged to . Taking the expectation on both sides gives the bound on in terms of .

As an example, consider with degrees of freedom. Then we know . Picking and plugging into the bound, we get

We know that in this case the correct bound is . To compare the bounds, we can consider the assymptotics for large . Here the Mgf bound is , where the real bound is . The Mgf bound is thus very strong in this case.

## Relation to other functions

Related to the moment-generating function are a number of other transforms that are common in probability theory:

- Characteristic function
- The characteristic function is related to the moment-generating function via the characteristic function is the moment-generating function of
*iX*or the moment generating function of*X*evaluated on the imaginary axis. This function can also be viewed as the Fourier transform of the probability density function, which can therefore be deduced from it by inverse Fourier transform. - Cumulant-generating function
- The cumulant-generating function is defined as the logarithm of the moment-generating function; some instead define the cumulant-generating function as the logarithm of the characteristic function, while others call this latter the
*second*cumulant-generating function. - Probability-generating function
- The probability-generating function is defined as This immediately implies that

## See also

This article includes a list of general references, but it remains largely unverified because it lacks sufficient corresponding inline citations. (February 2010) (Learn how and when to remove this template message) |

## References

### Citations

**^**Bulmer, M. G. (1979).*Principles of Statistics*. Dover. pp. 75–79. ISBN 0-486-63760-3.**^**Kotz et al.^{[full citation needed]}p. 37 using 1 as the number of degree of freedom to recover the Cauchy distribution

### Sources

- Casella, George; Berger, Roger.
*Statistical Inference*(2nd ed.). pp. 59–68. ISBN 978-0-534-24312-8.