This article may be too technical for most readers to understand. Please help improve it to make it understandable to nonexperts, without removing the technical details. (April 2014) (Learn how and when to remove this template message) 
In logic, a logical connective (also called a logical operator, sentential connective, or sentential operator) is a symbol or word used to connect two or more sentences (of either a formal or a natural language) in a grammatically valid way, such that the value of the compound sentence produced depends only on that of the original sentences and on the meaning of the connective.
The most common logical connectives are binary connectives (also called dyadic connectives), which join two sentences and which can be thought of as the function's operands. Another common logical connective, negation, is considered to be a unary connective.^{[1]}
Logical connectives, along with quantifiers, are the two main types of logical constants used in formal systems (such as propositional logic and predicate logic). Semantics of a logical connective is often (but not always) presented as a truth function.
A logical connective is similar to, but not equivalent to, a syntax commonly used in programming languages called a conditional operator.^{[2]}
In language
Natural language
In the grammar of natural languages, two sentences may be joined by a grammatical conjunction to form a grammatically compound sentence. Some but not all such grammatical conjunctions are truth functional. For example, consider the following sentences:
 Jack went up the hill.
 Jill went up the hill.
 Jack went up the hill and Jill went up the hill.
 Jack went up the hill so Jill went up the hill.
Notice in the list of sentences above, that those marked C and marked D use the words and and so. These words are called grammatical conjunctions because they join the two sentences (A) and (B), to form the compound sentences (C) and (D). The word and in sentence (C) is a logical connective. Notice that the truth of (C) as a compound is either true or false. But (C) is completely determined by what truth is found for the simpler sentence (A), the simpler sentence (B), and the logical definition of and. It would make no sense, and violate the rules of logic to affirm (A) is true and (B) is true but deny that (C) is true. However, the word so in (D) is not a logical connective, since it would be quite reasonable to affirm (A) and (B) but deny (D): perhaps, after all, Jill went up the hill to fetch a pail of water, not because Jack had gone up the hill at all.
Various English words and word pairs express logical connectives, and some of them are synonymous. These include, among others:
Word  Connective  Symbol  Logical gate 

and  conjunction  "∧"  AND 
and then  conjunction  "∧"  AND 
and then within  conjunction  "∧"  AND 
or  disjunction  "∨"  OR 
either...or  exclusive disjunction  "⊕"  XOR 
either, but not both  exclusive disjunction  "⊕"  XOR 
implies  material implication  "→"  IMPLY 
is implied by  converse implication  "←"  
if...then  material implication  "→"  IMPLY 
...if  converse implication  "←"  
if and only if  biconditional  "↔"  XNOR 
just in case  biconditional  "↔"  XNOR 
but  conjunction  "∧"  AND 
however  conjunction  "∧"  AND 
not both  alternative denial  "↑"  NAND 
neither...nor  joint denial  "↓"  NOR 
not, not that  negation  "¬"  NOT 
it is false that  negation  "¬"  NOT 
it is not the case that  negation  "¬"  NOT 
although  conjunction  "∧"  AND 
even though  conjunction  "∧"  AND 
therefore  material implication  "→"  IMPLY 
so  material implication  "→"  IMPLY 
that is to say  biconditional  "↔"  XNOR 
furthermore  conjunction  "∧"  AND 
but not  material nonimplication  "↛"  NIMPLY 
not...but  converse nonimplication  "↚"  
without...there is no  material implication  "→"  IMPLY 
no... without  converse implication  "←" 
Formal languages
In formal (logical) languages, truth functions are represented by unambiguous symbols. This allows logical statements to not be understood in an ambiguous way. These symbols are called logical connectives, logical operators, propositional operators, or, in classical logic, truthfunctional connectives. For the rules which allow new wellformed formulas to be constructed by joining other wellformed formulas using truthfunctional connectives, see wellformed formula.
Logical connectives can be used to link more than two statements, so one can speak about nary logical connective.
Common logical connectives
Symbol, name  Truth table 
Venn diagram  

Zeroary connectives (constants)  
⊤  Truth/tautology  1  
⊥  Falsity/contradiction  0  
Unary connectives  
P =  0  1  
Proposition P  0  1  
¬  Negation  1  0  
Binary connectives  
P =  0  1  
Q =  0  1  0  1  
Proposition P  0  0  1  1  
Proposition Q  0  1  0  1  
∧  Conjunction  0  0  0  1  
↑  Alternative denial  1  1  1  0  
∨  Disjunction  0  1  1  1  
↓  Joint denial  1  0  0  0  
→  Material conditional  1  1  0  1  
Exclusive or  0  1  1  0  
↔  Biconditional  1  0  0  1  
←  Converse implication  1  0  1  1  
More information 
List of common logical connectives
Commonly used logical connectives include:^{[1]}^{[3]}
 Negation (not): ¬ , N (prefix), ~^{[4]}
 Conjunction (and): ∧ , K (prefix), & , ∙
 Disjunction (or): ∨, A (prefix)
 Material implication (if...then): → , C (prefix), ⇒ , ⊃
 Biconditional (if and only if): ↔ , E (prefix), ≡ , =
Alternative names for biconditional are iff, xnor, and biimplication.
For example, the meaning of the statements it is raining (denoted by P) and I am indoors (denoted by Q) is transformed, when the two are combined with logical connectives:
 It is not raining (P)
 It is raining and I am indoors ()
 It is raining or I am indoors ()
 If it is raining, then I am indoors ()
 If I am indoors, then it is raining ()
 I am indoors if and only if it is raining ()
It is also common to consider the always true formula and the always false formula to be connective:^{[1]}
History of notations
 Negation: the symbol ¬ appeared in Heyting in 1929^{[5]}^{[6]} (compare to Frege's symbol ⫟ in his Begriffsschrift); the symbol ~ appeared in Russell in 1908;^{[7]} an alternative notation is to add a horizontal line on top of the formula, as in ;^{[1]} another alternative notation is to use a prime symbol as in P'.
 Conjunction: the symbol ∧ appeared in Heyting in 1929^{[5]} (compare to Peano's use of the settheoretic notation of intersection ∩^{[8]}); the symbol & appeared at least in Schönfinkel in 1924;^{[9]} the symbol . comes from Boole's interpretation of logic as an elementary algebra.
 Disjunction: the symbol ∨ appeared in Russell in 1908^{[7]} (compare to Peano's use of the settheoretic notation of union ∪); the symbol + is also used, in spite of the ambiguity coming from the fact that the + of ordinary elementary algebra is an exclusive or when interpreted logically in a twoelement ring; punctually in the history a + together with a dot in the lower right corner has been used by Peirce,^{[10]}
 Implication: the symbol → can be seen in Hilbert in 1917;^{[11]} ⊃ was used by Russell in 1908^{[7]} (compare to Peano's inverted C notation); ⇒ was used in Vax.^{[12]}
 Biconditional: the symbol ≡ was used at least by Russell in 1908;^{[7]} ↔ was used at least by Tarski in 1940;^{[13]} ⇔ was used in Vax; other symbols appeared punctually in the history, such as ⊃⊂ in Gentzen,^{[14]} ~ in Schönfinkel^{[9]} or ⊂⊃ in Chazal.^{[15]}
 True: the symbol 1 comes from Boole's interpretation of logic as an elementary algebra over the twoelement Boolean algebra; other notations include (to be found in Peano).
 False: the symbol 0 comes also from Boole's interpretation of logic as a ring; other notations include (to be found in Peano).
Some authors used letters for connectives at some time of the history: u. for conjunction (German's "und" for "and") and o. for disjunction (German's "oder" for "or") in earlier works by Hilbert (1904); Np for negation, Kpq for conjunction, Dpq for alternative denial, Apq for disjunction, Xpq for joint denial, Cpq for implication, Epq for biconditional in Łukasiewicz (1929);^{[16]} cf. Polish notation.
Redundancy
Such a logical connective as converse implication "←" is actually the same as material conditional with swapped arguments; thus, the symbol for converse implication is redundant. In some logical calculi (notably, in classical logic), certain essentially different compound statements are logically equivalent. A less trivial example of a redundancy is the classical equivalence between ¬P ∨ Q and P → Q. Therefore, a classicalbased logical system does not need the conditional operator "→" if "¬" (not) and "∨" (or) are already in use, or may use the "→" only as a syntactic sugar for a compound having one negation and one disjunction.
There are sixteen Boolean functions associating the input truth values P and Q with fourdigit binary outputs.^{[17]} These correspond to possible choices of binary logical connectives for classical logic. Different implementations of classical logic can choose different functionally complete subsets of connectives.
One approach is to choose a minimal set, and define other connectives by some logical form, as in the example with the material conditional above. The following are the minimal functionally complete sets of operators in classical logic whose arities do not exceed 2:
 One element
 {↑}, {↓}.
 Two elements
 , , , , , , , , , , , , , , , , , .
 Three elements
 , , , , , .
Another approach is to use with equal rights connectives of a certain convenient and functionally complete, but not minimal set. This approach requires more propositional axioms, and each equivalence between logical forms must be either an axiom or provable as a theorem.
The situation, however, is more complicated in intuitionistic logic. Of its five connectives, {∧, ∨, →, ¬, ⊥}, only negation "¬" can be reduced to other connectives (see False (logic) § False, negation and contradiction for more). Neither conjunction, disjunction, nor material conditional has an equivalent form constructed from the other four logical connectives.
Properties
Some logical connectives possess properties which may be expressed in the theorems containing the connective. Some of those properties that a logical connective may have are:
 Associativity
 Within an expression containing two or more of the same associative connectives in a row, the order of the operations does not matter as long as the sequence of the operands is not changed.
 Commutativity
 The operands of the connective may be swapped, preserving logical equivalence to the original expression.
 Distributivity
 A connective denoted by · distributes over another connective denoted by +, if a · (b + c) = (a · b) + (a · c) for all operands a, b, c.
 Idempotence
 Whenever the operands of the operation are the same, the compound is logically equivalent to the operand.
 Absorption
 A pair of connectives ∧, ∨ satisfies the absorption law if for all operands a, b.
 Monotonicity
 If f(a_{1}, ..., a_{n}) ≤ f(b_{1}, ..., b_{n}) for all a_{1}, ..., a_{n}, b_{1}, ..., b_{n} ∈ {0,1} such that a_{1} ≤ b_{1}, a_{2} ≤ b_{2}, ..., a_{n} ≤ b_{n}. E.g., ∨, ∧, ⊤, ⊥.
 Affinity
 Each variable always makes a difference in the truthvalue of the operation or it never makes a difference. E.g., ¬, ↔, , ⊤, ⊥.
 Duality
 To read the truthvalue assignments for the operation from top to bottom on its truth table is the same as taking the complement of reading the table of the same or another connective from bottom to top. Without resorting to truth tables it may be formulated as g̃(¬a_{1}, ..., ¬a_{n}) = ¬g(a_{1}, ..., a_{n}). E.g., ¬.
 Truthpreserving
 The compound all those argument are tautologies is a tautology itself. E.g., ∨, ∧, ⊤, →, ↔, ⊂ (see validity).
 Falsehoodpreserving
 The compound all those argument are contradictions is a contradiction itself. E.g., ∨, ∧, , ⊥, ⊄, ⊅ (see validity).
 Involutivity (for unary connectives)
 f(f(a)) = a. E.g. negation in classical logic.
For classical and intuitionistic logic, the "=" symbol means that corresponding implications "…→…" and "…←…" for logical compounds can be both proved as theorems, and the "≤" symbol means that "…→…" for logical compounds is a consequence of corresponding "…→…" connectives for propositional variables. Some manyvalued logics may have incompatible definitions of equivalence and order (entailment).
Both conjunction and disjunction are associative, commutative and idempotent in classical logic, most varieties of manyvalued logic and intuitionistic logic. The same is true about distributivity of conjunction over disjunction and disjunction over conjunction, as well as for the absorption law.
In classical logic and some varieties of manyvalued logic, conjunction and disjunction are dual, and negation is selfdual, the latter is also selfdual in intuitionistic logic.
This section needs expansion. You can help by adding to it. (March 2012) 
Order of precedence
As a way of reducing the number of necessary parentheses, one may introduce precedence rules: ¬ has higher precedence than ∧, ∧ higher than ∨, and ∨ higher than →. So for example, is short for .
Here is a table that shows a commonly used precedence of logical operators.^{[18]}
However, not all compilers use the same order; for instance, an ordering in which disjunction is lower precedence than implication or biimplication has also been used.^{[19]} Sometimes precedence between conjunction and disjunction is unspecified requiring to provide it explicitly in given formula with parentheses. The order of precedence determines which connective is the "main connective" when interpreting a nonatomic formula.
Computer science
This section needs expansion. You can help by adding to it. (March 2012) 
A truthfunctional approach to logical operators is implemented as logic gates in digital circuits. Practically all digital circuits (the major exception is DRAM) are built up from NAND, NOR, NOT, and transmission gates; see more details in Truth function in computer science. Logical operators over bit vectors (corresponding to finite Boolean algebras) are bitwise operations.
But not every usage of a logical connective in computer programming has a Boolean semantic. For example, lazy evaluation is sometimes implemented for P ∧ Q and P ∨ Q, so these connectives are not commutative if either or both of the expressions P, Q have side effects. Also, a conditional, which in some sense corresponds to the material conditional connective, is essentially nonBoolean because for if (P) then Q;
, the consequent Q is not executed if the antecedent P is false (although a compound as a whole is successful ≈ "true" in such case). This is closer to intuitionist and constructivist views on the material conditional— rather than to classical logic's views.
See also


Notes
 ^ ^{a} ^{b} ^{c} ^{d} "Comprehensive List of Logic Symbols". Math Vault. 20200406. Retrieved 20200902.
 ^ Cogwheel. "What is the difference between logical and conditional /operator/". Stack Overflow. Retrieved 9 April 2015.
 ^ "Connective  logic". Encyclopedia Britannica. Retrieved 20200902.
 ^ Weisstein, Eric W. "Negation". mathworld.wolfram.com. Retrieved 20200902.
 ^ ^{a} ^{b} Heyting (1929) Die formalen Regeln der intuitionistischen Logik.
 ^ Denis Roegel (2002), A brief survey of 20th century logical notations (see chart on page 2).
 ^ ^{a} ^{b} ^{c} ^{d} Russell (1908) Mathematical logic as based on the theory of types (American Journal of Mathematics 30, p222–262, also in From Frege to Gödel edited by van Heijenoort).
 ^ Peano (1889) Arithmetices principia, nova methodo exposita.
 ^ ^{a} ^{b} Schönfinkel (1924) Über die Bausteine der mathematischen Logik, translated as On the building blocks of mathematical logic in From Frege to Gödel edited by van Heijenoort.
 ^ Peirce (1867) On an improvement in Boole's calculus of logic.
 ^ Hilbert (1917/1918) Prinzipien der Mathematik (Bernays' course notes).
 ^ Vax (1982) Lexique logique, Presses Universitaires de France.
 ^ Tarski (1940) Introduction to logic and to the methodology of deductive sciences.
 ^ Gentzen (1934) Untersuchungen über das logische Schließen.
 ^ Chazal (1996) : Éléments de logique formelle.
 ^ See Roegel
 ^ Bocheński (1959), A Précis of Mathematical Logic, passim.
 ^ O'Donnell, John; Hall, Cordelia; Page, Rex (2007), Discrete Mathematics Using a Computer, Springer, p. 120, ISBN 9781846285981.
 ^ Jackson, Daniel (2012), Software Abstractions: Logic, Language, and Analysis, MIT Press, p. 263, ISBN 9780262017152.
References
 Bocheński, Józef Maria (1959), A Précis of Mathematical Logic, translated from the French and German editions by Otto Bird, D. Reidel, Dordrecht, South Holland.
 Enderton, Herbert (2001), A Mathematical Introduction to Logic (2nd ed.), Boston, MA: Academic Press, ISBN 9780122384523
 Gamut, L.T.F (1991), "Chapter 2", Logic, Language and Meaning, 1, University of Chicago Press, pp. 54–64, OCLC 21372380
 Rautenberg, W. (2010), A Concise Introduction to Mathematical Logic (3rd ed.), New York: Springer Science+Business Media, doi:10.1007/9781441912213, ISBN 9781441912206.
Further reading
 Lloyd Humberstone (2011). The Connectives. MIT Press. ISBN 9780262016544.
External links
Wikimedia Commons has media related to Logical connectives. 
 "Propositional connective", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
 Lloyd Humberstone (2010), "Sentence Connectives in Formal Logic", Stanford Encyclopedia of Philosophy (An abstract algebraic logic approach to connectives.)
 John MacFarlane (2005), "Logical constants", Stanford Encyclopedia of Philosophy.